Abstract

Vascular smooth muscle cells (VSMC) contribute to the pathophysiology of hypertension through cell growth and contraction, and phospholipase C (PLC) is a critical effector enzyme in growth factor and vasoconstrictor signaling. There is indirect evidence that angiotensin II (ANG II) receptors are linked to the PLC-beta isoform signaling pathways. However, recent studies suggest that PLC-beta isoforms may not be expressed in VSMC. Our data demonstrate that in human aortic VSMC, PLC-beta 1 and PLC-gamma 1 proteins were detected by immunoblot analysis, and PLC-beta 1 mRNA was identified by reverse transcriptase-polymerase chain reaction in rat aortic VSMC. Incubation of permeabilized VSMC with anti-PLC-beta 1 or anti-Gq alpha antibodies inhibited ANG II-dependent inositol polyphosphate (IP) formation, while anti-PLC-gamma 1 antibodies did not inhibit ANG II-regulated IP formation. Conversely, anti-PLC-gamma 1 antibodies completely abolished platelet-derived growth factor (PDGF)-dependent IP generation, whereas anti-PLC-beta 1 antibodies had no effect on PDGF-induced PLC activation. Inhibition of tyrosine phosphorylation with genistein or herbimycin A did not diminish ANG II-stimulated IP formation or cytosolic free Ca2+ concentration transients, thereby confirming that ANG II signals via a PLC-gamma 1-independent mechanism. In summary, PLC-beta 1 and PLC-gamma 1 are expressed in human aortic VSMC, and PLC-beta 1 is the isoform that is critical for ANG II-regulated PLC signaling in these cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call