Abstract

Angiotensin I-converting enzyme (ACE), a dipeptidyl carboxypeptidase, catalyzes the conversion of Angiotensin I to the potent vasoconstrictor Angiotensin II and plays an important physiological role in regulating blood pressure. Inhibitors of angiotensin 1-converting enzyme derived from food proteins are utilized for pharmaceuticals and physiologically functional foods. ACE inhibitory properties of different enzymatic hydrolysates of glycinin, the major storage protein of soybean, have been demonstrated. The IC50 value for the different enzyme digests ranges from 4.5 to 35 microg of N2. The Protease P hydrolysate contained the most potent suite of ACE inhibitory peptides. The ACE inhibitory activity of the Protease P hydrolysate after fractionation by RP-HPLC and ion-pair chromatography was ascribed to a single peptide. The peptide was homogeneous as evidenced by MALDI-TOF and identified to be a pentapeptide. The sequence was Val-Leu-Ile-Val-Pro. This peptide was synthesized using solid-phase FMOC chemistry. The IC50 for ACE inhibition was 1.69 +/- 0.17 microM. The synthetic peptide was a potent competitive inhibitor of ACE with a Ki of 4.5 +/- 0.25 x 10(-6) M. This peptide was resistant to digestion by proteases of the gastrointestinal tract. The antihypertensive property of this peptide derived from glycinin might find importance in the development of therapeutic functional foods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call