Abstract
Angiotensin-I converting enzyme (ACE) inhibitors are widely used to control hypertension. In this study, protein hydrolysates from shiitake mushroom were hydrolyzed to prepare ACE-inhibitory peptides. Optimum process conditions for the hydrolysis of shiitake mushrooms using Alcalase were optimized using response surface methodology. Monitoring was conducted to check the degree of hydrolysis (DH) and ACE inhibitory activity. In the results, the optimum condition with the highest DH value of 28.88% was 50.2°C, 3-h hydrolysis time, and 1.16 enzyme/substrate ratios. The highest ACE inhibitory activity (IC50 of 0.33μg/mL) was under 47°C, 3h 28min hydrolysis time, and 0.59 enzyme/substrate ratios. The highest activity was fractionated into 5 ranges of molecular weight, and the fraction below 0.65kDa showed the highest activity with IC50 of 0.23μg/mL. This fraction underwent purification using RP-HPLC, meanwhile the peak which offered a retention time of about 37min showed high ACE inhibitory activity. Mass spectrometry identified the amino acid sequence of this peak as Lys-Ile-Gly-Ser-Arg-Ser-Arg-Phe-Asp-Val-Thr (KIGSRSRFDVT), with a molecular weight of 1265.43Da. The synthesized variant of this peptide produced an ACE inhibitory activity (IC50) of 37.14μM. The peptide KIGSRSRFDVT was shown to serve as a non-competitive inhibitor according to the Lineweaver-Burk plot findings. A molecular docking study was performed, which showed that the peptide binding occurred at an ACE non-active site. The findings suggest that peptides derived from shiitake mushrooms could serve either as useful components in pharmaceutical products, or in functional foods for the purpose of treating hypertension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.