Abstract

Angiotensin I-converting enzyme (ACE) is a dipeptidyl carboxypeptidase that removes C-terminal dipeptides from relatively short oligopeptides, usually smaller than 15 amino acids. In mammals, the enzyme has several important roles in the metabolism of vasoactive peptides, but its physiological role in insects is not fully understood. We now report the properties of an ACE in a lepidopteran species (the tomato moth, Lacanobia oleracea) and suggest new physiological roles for the enzyme in this insect. ACE activity increases four-fold during the last stadium and in early pupae, a rise which, in its timing, is similar to what has been observed previously in the transition of larva to pupa in Drosophila melanogaster. This suggests that the increase in ACE activity might be of general importance for peptide metabolism during metamorphosis in holometabolous insects. High levels of ACE activity were found in the haemolymph of sixth stadium larvae and adult insects, and in the reproductive tissues of both male and female adults. Almost all of the ACE activity in the reproductive tissues was found in the accessory glands of the male and the spermatheca and bursa copulatrix of the female. The decline in accessory gland ACE in mated males and the concomitant rise in ACE activity in the spermatheca and bursa copulatrix of the female suggested the transfer of ACE from the male to the female during copulation. Using several convenient peptides as substrates, we have shown that the spermatophore/bursa copulatrix taken from mated female insects possess an aminopeptidase, a carboxypeptidase and a dipeptidase, in addition to high levels of ACE. These peptidases might be involved in the breakdown of proteins to peptides and eventually to amino acids in the spermatophore. Evidence for such a proteolytic pathway and its role in providing substrates for the TCA cycle has been obtained previously in a study of reproduction in Bombyx mori.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.