Abstract

AbstractPeptides derived from aquatic animals have been shown to have inhibitory activity against angiotensin converting enzyme (ACE), which is a key enzyme behind elevated blood pressure. In this study a catfish protein isolate was prepared and hydrolyzed to 5%, 15% and 30% degrees of hydrolysis (% DH) and soluble peptides separated from the total hydrolysate. The hydrolysate and its soluble peptide fraction were studied separately. Increased hydrolysis produced smaller peptides, with the smallest peptides remaining in the soluble fraction. Both hydrolysates and its soluble fraction had high ACE inhibition activities, from 70% to 90.6%, depending on fraction and % DH. Results suggested that there is not a simple relationship between average peptide size and extent of % DH and ACE inactivation, but clearly the soluble fraction of the hydrolysate, containing the smallest peptides, is responsible for most of the ACE inhibition activity of the hydrolysate. Hydrolysates prepared from a pure and uniform catfish protein isolate substrate do therefore show a potential for ACE inhibition and may find use as bioactive ingredients. Copyright © 2007 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.