Abstract

Angiotensin (Ang)-(1-7) ameliorates vascular injury by increasing nitric oxide (NO) bioavailability. Evidence that Ang-(1-7) attenuates the development of atherosclerosis through a NO-dependent mechanism is still missing. Moreover, it has been postulated that Ang-(1-7) may mediate its effects by other mechanisms than Mas receptor activation. To investigate Ang-(1-7)-dependent Mas receptor function, we treated apoE-KO and apoE/Mas-KO mice chronically with Ang-(1-7) (82μg/kg per hour) or saline for 6weeks. Flow-mediated dilation (FMD), a measure for NO-dependent vasodilation and the most accepted prognostic marker for the development of atherosclerosis, was measured in vivo. Chronic Ang-(1-7) treatment improved FMD and attenuated the development of atherosclerosis in apolipoproteinE (apoE)-KO but not in apoE/Mas-KO mice. These effects were accompanied by increased aortic nitrite and cGMP levels. To test whether Ang-(1-7) modulates atherosclerosis through a NO-dependent mechanism, apoE-KO mice were treated with the NO synthase inhibitor L-NAME (20mg/kg/day) in the presence or absence of Ang-(1-7). L-NAME treatment reduced aortic nitrite content and increased blood pressure and exaggerated atherosclerosis compared to untreated apoE-KO mice. In L-NAME-treated apoE-KO mice, chronic Ang-(1-7) treatment did not increase aortic nitrite content and consequently showed no effect on blood pressure and the development of atherosclerosis. The present study proves that Ang-(1-7) mediates its protective vascular effects through Mas receptor activation. Moreover, Ang-(1-7)-mediated NO generation is essential for improving vascular function and prevents atherosclerosis in apoE-KO mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.