Abstract

The adaptation of herbivorous insects to new host plants is key to their evolutionary success in diverse environments. Many insects are associated with mutualistic gut bacteria that contribute to the host's nutrition and can thereby facilitate dietary switching in polyphagous insects. However, how gut microbial communities differ between populations of the same species that feed on different host plants remains poorly understood. Most species of Pyrrhocoridae (Hemiptera: Heteroptera) are specialist seed-feeders on plants in the family Malvaceae, although populations of one species, Probergrothius angolensis, have switched to the very distantly related Welwitschia mirabilis plant in the Namib Desert. We first compared the development and survival of laboratory populations of Pr.angolensis with two other pyrrhocorids on seeds of Welwitschia and found only Pr.angolensis was capable of successfully completing its development. We then collected Pr.angolensis in Namibia from Malvaceae and Welwitschia host plants, respectively, to assess their bacterial and fungal community profiles using high-throughput amplicon sequencing. Comparison with long-term laboratory-reared insects indicated stable associations of Pr.angolensis with core bacteria (Commensalibacter, Enterococcus, Bartonella and Klebsiella), but not with fungi or yeasts. Phylogenetic analyses of core bacteria revealed relationships to other insect-associated bacteria, but also found new taxa indicating potential host-specialized nutritional roles. Importantly, the microbial community profiles of bugs feeding on Welwitschia versus Malvaceae revealed stark and consistent differences in the relative abundance of core bacterial taxa that correlate with the host-plant switch; we were able to reproduce this result through feeding experiments. Thus, a dynamic gut microbiota may provide a means for insect adaptation to new host plants in new environments when food plants are extremely divergent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.