Abstract

Background Tissue engineering based on whole-organ perfusion decellularization has successfully generated small-animal organs, including the heart and limbs. Herein, we aimed to use angiosome-guided perfusion decellularization to generate an acellular fasciocutaneous flap matrix with an intact vascular network. Method Abdominal flaps of rats were harvested, and the vascular pedicle (iliac artery and vein) was dissected and injected with methylene blue to identify the angiosome region and determine the flap dimension for harvesting. To decellularize flaps, the iliac artery was perfused sequentially with 1% sodium dodecyl sulfate, deionized water, and 1% Triton-X100. Gross morphology, histology, and DNA quantity of flaps were then obtained. Flaps were also subjected to glycosaminoglycan and hydroxyproline content assays, as well as computer tomography angiography. Results Histological assessment indicated that cellular content was completely removed in all flap layers following 10-h perfusion in sodium dodecyl sulfate. DNA quantification confirmed 81% DNA removal. Based on biochemical assays, decellularized flaps had hydroxyproline content comparable with that of native flaps, although significantly fewer glycosaminoglycans (p = 0.0019). Histology and computed tomography angiography illustrated the integrity and perfusability of the vascular system. Conclusion The proposed angiosome-guided perfusion decellularization protocol could effectively remove cellular content from rat fasciocutaneous flaps and preserve the integrity of innate vascular networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.