Abstract

Vascular reactivity shows biphasic changes after severe trauma or shock. Our aim was to elucidate the mechanisms of biphasic-changed vascular reactivity after haemorrhagic shock by observing the regulation of angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) on it. Haemorrhagic-shock Sprague-Dawley rats, hypoxia-treated superior mesenteric arteries (SMAs) with intact endothelia, and a cell mixture of vascular smooth muscle cells (VSMCs) and vascular endothelial cells (VECs) were adopted to evaluate the regulatory effects of Ang-1 and Ang-2 on vascular reactivity and their relationship to Tie2 (receptor tyrosine kinase)-Akt-endothelial nitric oxide synthase (eNOS) and Tie2-extracellular signal-regulated kinase (Erk)-inducible nitric oxide synthase (iNOS) signal pathways. Ang-1 expression, Tie2 phosphorylation, and nitric oxide (NO) release were increased at early shock. Exogenous Ang-1 maintained the vascular reactivity of SMAs after early hypoxia. Tie2-blocking antibody and the antagonists of Akt and eNOS antagonized Ang-1-induced maintenance in vascular reactivity and a slight release in NO at the early stage of shock. Ang-2 expression, Tie2 phosphorylation, and NO release were greatly increased at late shock, but exogenous Ang-2 further decreased the vascular reactivity of SMAs after late hypoxia. Tie2-blocking antibody and the antagonists of Erk and iNOS andtagonized the Ang-2-induced decrease in vascular reactivity and a large release of NO at the late stage of shock. Ang-1 and Ang-2 participated in the regulation of vascular reactivity after haemorrhagic shock. Ang-1 was mainly responsible for the hyperreactivity at early shock through the Tie2-Akt-eNOS pathway and an appropriate amount of NO release. Ang-2 was mainly responsible for the hyporeactivity at late shock through the Tie2-Erk-iNOS pathway and the release of a large amount of NO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call