Abstract

The development of valuable theranostic agents for overcoming the blood-brain barrier (BBB) to achieve efficient imaging-guided glioma-targeting delivery of therapeutics remains a great challenge for personalized glioma therapy. We herein developed a novel functional star-shaped polyprodrug amphiphile (denoted as CPP-2) via a combination of successive reversible addition-fragmentation chain transfer (RAFT) polymerization and click functionalization. In a diluted solution, the star amphiphile existed as structurally stable unimolecular micelles, containing hydrophobic cores conjugated with reduction-responsive camptothecin prodrugs Camptothecin (CPT) prodrug monomer (CPTM) and a tertiary amine monomer (2-(diethylamine) ethyl methacrylate, DEA) and hydrophilic oligo-(ethylene glycol) monomethyl ether methacrylat (OEGMA) outer coronas covalently decorated with dual-targeting moieties Angiopep2 (ANG) and small magnetic resonance imaging (MRI) contrast agents DOTA-Gd. In vitro and in vivo data in this study demonstrated that the ANG-modified micelles were capable of efficiently penetrating the BBB and delivering loaded cargoes such as CPT and Gd3+ contrast agents to glioma cells, leading to a considerably enhanced t1 relaxivity as well as antiglioma efficacy. Simultaneously, the targeted antiglioma efficacy and noninvasive MR imaging for a visualized therapy were realized. These collective findings augured well for the star polyprodrug amphiphiles to be utilized as a novel theranostic platform for clinical application in glioma therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call