Abstract
In pregastrula stage mouse embryos, visceral endoderm (VE) migrates from a distal to anterior position to initiate anterior identity in the adjacent epiblast [1, 2]. This anterior visceral endoderm (AVE) is then displaced away from the epiblast by the definitive endoderm to become associated with the extra-embryonic ectoderm and subsequently contributes to the yolk sac. Little is known about the molecules that regulate this proximal displacement. Here we describe a role for mouse angiomotin (amot) in VE movements. amot expression is initially detected in the AVE and subsequently in the VE associated with the extra-embryonic ectoderm. Most amot mutant mice die soon after gastrulation with distinct furrows of VE located at the junction of the embryonic and extra-embryonic regions. Mutant analysis suggests that VE accumulation in these furrows is caused by defects in cell migration into proximal extra-embryonic regions, although distal-to-anterior movements associated with the epiblast, definitive endoderm formation, and anterior specification of the epiblast appear to be normal. These results suggest that amot acts within subregions of the VE to regulate morphogenetic movements that are required for embryo viability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.