Abstract

Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent and secrete angiogenic factors, which could help patients with occlusive arterial diseases. We hypothesize that MSCs, in comparison to fibroblasts, survive better under hypoxic conditions in vitro and in vivo. MSCs and fibroblasts from L2G mice expressing firefly luciferase and GFP were cultured in normoxic and hypoxic conditions for 24 hours. In vitro cell viability was tested by detecting apoptosis and necrosis. MSCs released higher amounts of VEGF (281.1 +/- 62.6 pg/ml) under hypoxic conditions compared to normoxia (154.9 +/- 52.3 pg/ml, p = NS), but were less tolerant to hypoxia (45 +/- 7.9%) than fibroblasts (28.1 +/- 3.6%, p = NS). A hindlimb ischemia model was created by ligating the femoral artery of 18 FVB mice. After one week, 1 x 106 cells (MSCs, fibroblasts or saline) were injected into the limb muscles of each animal (n = 6 per group). Bioluminescence measurement to assess the viability of luciferase positive cells showed significant proliferation of MSCs on day four compared to fibroblasts (p = 0.001). Three weeks after cell delivery, the capillary to muscle fiber ratio of ischemic areas was analyzed. In the MSC group, vessel density was significantly higher than in the fibroblast or control group (0.5 +/- 0.08 and 0.3 +/- 0.03). Under hypoxia, MSCs produced more VEGF compared to normal conditions and MSC transplantation into murine ischemic limbs led to an increase in vessel density, although MSC survival was limited. This study suggests that MSC transplantation may be an effective and clinically relevant tool in the therapy of occlusive arterial diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call