Abstract
AbstractCirculating endothelial progenitor cells (EPCs) are thought to contribute to angiogenesis following vascular injury, stimulating interest in their ability to mediate therapeutic angiogenesis. However, the number of EPCs in the blood is low, limiting endogenous repair, and a method to rapidly mobilize EPCs has not been reported. In this study, healthy donors were mobilized sequentially with the CXCR4 antagonist, AMD3100, and G-CSF. The number of EPCs and circulating angiogenic cells (CACs) in the blood and pheresis product was determined and the angiogenic capacity of each cell population assessed. Compared with baseline, treatment with AMD3100 or G-CSF increased the number of blood CACs 10.0-fold ± 4.4-fold and 8.8-fold ± 3.7-fold, respectively. The number of EPCs in the blood increased 10.2-fold ± 3.3-fold and 21.8-fold ± 5.4-fold, respectively. On a percell basis, CACs harvested from G-CSF–mobilized blood displayed increased in vivo angiogenic potential compared with AMD3100-mobilized CACs. Mobilized EPCs displayed a greater proliferative capacity than EPCs isolated from baseline blood. Both CACs and EPCs were efficiently harvested by leukapheresis. Cryopreserved CACs but not EPCs retained functional activity after thawing. These data show that AMD3100 is a potent and rapid mobilizer of angiogenic cells and demonstrate the feasibility of obtaining and storing large numbers of angiogenic cells by leukapheresis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.