Abstract

Post-surgical bone defects require new alternative approaches for a better healing process. For this matter, photobiomodulation therapy (PBMT) has been used in order to improve the process of healing, pain, and inflammation reduction and tissue rejuvenation. This study is set to evaluate the effect of PBMT on angiogenic and inflammatory factors for bone regeneration in rat post-surgical cranial defects. Thirty male Wistar rats were distributed accidentally into two groups (Subdivided into 3 groups according to their follow-up durations). During operation, an 8-mm critical-sized calvarial defect was made in each rat. A continuous diode laser was used (power density 100mW/cm2, wavelength 810nm, the energy density of 4J/cm2). Bone samples were assessed histomorphometrically and histologically after hematoxylin and eosin (H&E) staining. ALP, PTGIR, OCN, and IL-1 levels were measured by RT-PCR. VEGF expression was studied by immunohistochemistry analysis. The level of IL-1 expression decreased significantly in the PBMT group compared to the control after 7days (p<0.05), while, the PTGIR level was improved significantly compared to the control group after 7days. Furthermore, levels of OCN and ALP improved after PBM use; however, the alterations were not statistically meaningful (p>0.05). Evaluation with IHC displayed a significant rise in VEGF expression after 3days in the PBMT group compared to the control (p>0.05). In this study's conditions, the results showed a meaningful alteration in osteogenic, inflammatory, and angiogenic mediators in post-surgical calvarial defect following PBMT. It appears that PBM can accelerate angiogenesis in the bone healing procedure which can be helpful in bone tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.