Abstract

Many angiogenic factors require endothelium-derived nitric oxide (NO) to exert their effects. Recently, an endogenous competitive antagonist of NO synthase has been characterized: asymmetric dimethylarginine (ADMA). Elevated plasma levels of ADMA reduce NO synthesis in hypercholesterolemia. Accordingly, we hypothesized that hypercholesterolemia impairs angiogenesis by an ADMA-dependent mechanism. Angiogenesis was assessed with the use of a disk angiogenesis system implanted subcutaneously in normal (E(+)) mice or apolipoprotein (apo)E-deficient hypercholesterolemic (E(-)) mice. After 2 weeks, the disks were removed, and the fibrovascular growth area was used as an index of angiogenesis. Basal and fibroblast growth factor-stimulated angiogenesis was impaired in E(-) mice, associated with an elevation in plasma ADMA. Oral administration of L-arginine reversed the impairment of angiogenesis in E(-) mice. By contrast, oral administration of L-nitroarginine (an exogenous antagonist of NO synthase) reduced angiogenesis. When added directly to the disk, ADMA dose-dependently inhibited basal and fibroblast growth factor-induced angiogenesis, an effect that was reversed by oral administration of L-arginine. The derangement of the NO synthase pathway that occurs in hypercholesterolemia is associated with an impairment of angiogenesis. The lipid-induced impairment of angiogenesis can be reversed by oral administration of L-arginine and can be mimicked in normocholesterolemic animals by administration of an NO synthase antagonist. The data are consistent with the hypothesis that ADMA is an endogenous inhibitor of angiogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.