Abstract

We previously have found that advanced glycation end products (AGE), senescent macroproteins formed at an accelerated rate in diabetes, arise in vivo not only from glucose but also from reducing sugars. Furthermore, we recently have shown that glyceraldehyde- and glycolaldehyde-derived AGE (glycer- and glycol-AGE) are mainly involved in loss of pericytes, the earliest histopathological hallmark of diabetic retinopathy. However, the effects of these AGE proteins on angiogenesis, another vascular derangement in diabetic retinopathy, remain to be elucidated. In this study, we investigated whether these AGE proteins elicit changes in cultured endothelial cells that are associated with angiogenesis. When human skin microvascular endothelial cells (EC) were cultured with glycer-AGE or glycol-AGE, growth and tube formation of EC, the key steps of angiogenesis, were significantly stimulated. The AGE-induced growth stimulation was significantly enhanced in AGE receptor (RAGE)-overexpressed EC. Furthermore, AGE increased transcriptional activity of nuclear factor-kB (NF-kB) and activator protein-1 (AP-1) and then up-regulated mRNA levels of vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2) in EC. Cerivastatin, a hydroxymethylglutaryl CoA reductase inhibitor; pyrrolidinedithiocarbamate; or curcumin was found to completely prevent the AGE-induced increase in NF-kB and AP-1 activity, VEGF mRNA up-regulation, and the resultant increase in DNA synthesis in microvascular EC. These results suggest that the AGE-RAGE interaction elicited angiogenesis through the transcriptional activation of the VEGF gene via NF-kB and AP-1 factors. By blocking AGE-RAGE signaling pathways, cerivastatin might be a promising remedy for treating patients with proliferative diabetic retinopathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call