Abstract

Gliomas are the most common brain tumors, with diverse biological behaviour. Glioblastoma (GBM), the most aggressive and with the worst prognosis, is characterized by an intense and aberrant angiogenesis, which distinguishes it from low-grade gliomas (LGGs) and benign expansive lesions, as meningiomas (MNGs). With increasing evidence for the importance of vascularization in tumor biology, we focused on the isolation and characterization of endothelial cells (ECs) from primary GBMs, LGGs and MNGs. Gene expression analysis by Real-Time PCR, immunofluorescence and flow cytometry analysis, tube-like structures formation and vascular permeability assays were performed. Our results showed a higher efficiency of ECs to form a complex vascular architecture, as well as a greater impairment of a brain blood barrier model, and an overexpression of pro-angiogenic mediators in GBM than in LGG and MNG. Furthermore, administration of temozolomide, bevacizumab, and sunitinib triggered a different proliferative, apoptotic and angiogenic response, in a dose and time-dependent manner. An increased resistance to temozolomide was observed in T98G cells co-cultured in GBM-EC conditioned media. Therefore, we developed a novel platform to reproduce tumor vascularization as “disease in a dish”, which allows us to perform screening of sensitivity/resistance to drugs, in order to optimize targeted approaches to GBM therapy.

Highlights

  • Gliomas are the most common brain tumors, with diverse biological behaviour

  • A lower intensity in GBM-endothelial cells (ECs) compared to low-grade gliomas (LGGs)-ECs and MNGs was observed for VE-Cadherin labelling

  • Our results demonstrated a significant increased positivity for endothelial marker in GBM-ECs compared to LGG-ECs and MNG-ECs15

Read more

Summary

Introduction

Gliomas are the most common brain tumors, with diverse biological behaviour. Glioblastoma (GBM), the most aggressive and with the worst prognosis, is characterized by an intense and aberrant angiogenesis, which distinguishes it from low-grade gliomas (LGGs) and benign expansive lesions, as meningiomas (MNGs). The heterogeneity of brain tumors, as well as the need to improve patient response to therapies, in terms of progression-free survival and quality of life, brings to mind the idea of developing patient-specific personalized therapies, based on cellular response to treatments. In this regard, the possibility to develop a primary EC characterization platform, biologically as close as possible to the in situ situation, as “disease in a dish”, greatly valorises brain tumor angiogenesis investigation, improving pharmacologic screening and, in turn, target therapies

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call