Abstract
Thermal wounds are complex and lethal with irregular shapes, risk of infection, slow healing, and large surface area. The mortality rate in patients with infected burns is twice that of non-infected burns. Developing multifunctional skin substitutes to augment the healing rate of infected burns is vital. Herein, we 3D printed a hydrogel scaffold comprising carboxymethyl chitosan (CMCs) and oxidized alginate grafted catechol (O-AlgCat) on a hydrophobic electrospun layer, forming a bilayer skin substitute (BSS). The functional layer (FL) was fabricated by physiochemical crosslinking to ensure favorable biodegradability. The gallium-containing hydrophobic electrospun layer or backing layer (BL) could mimic the epidermis of skin, avoiding fluid penetration and offering antibacterial activity. 3D printed FL contains catechol, gallium, and biologically active platelet rich fibrin (PRF) to adhere to both tissue and BL, show antibacterial activity, encourage angiogenesis, cell growth, and migration. The fabricated bioactive BSS exhibited noticeable adhesive properties (P≤0.05), significant antibacterial activity (P≤0.05), faster clot formation, and the potential to promote proliferation (P≤0.05) and migration (P≤0.05) of L929cells. Furthermore, the angiogenesis was significantly higher (P≤0.05) when evaluated in vivo and in ovo. The BSS-covered wounds healed faster due to low inflammation and high collagen density. Based on the obtained results, the fabricated bioactive BSS could be an effective treatment for infected burn wounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.