Abstract

Angiogenesis facilitates the formation of microvascular networks and promotes neurological deficit recovery after cerebral ischemia-reperfusion injury (CIRI). This study investigated the angiogenesis effects of 4-methoxy benzyl alcohol (4-MA) on CIRI. The angiogenesis effects of 4-MA and the potential underlying mechanisms were assessed based on a middle cerebral artery occlusion/reperfusion (MCAO/R) rat model and a hind limb ischemic (HLI) mouse model. Immunofluorescence was conducted to detect microvessel density, and Western blotting and polymerase chain reaction were performed to determine the expression of angiogenesis-promoting factors. In addition, we investigated whether the angiogenesis effects of 4-MA caused damage to the blood-brain barrier (BBB). After treatment with 4-MA (20 mg/kg) for 7 days, the neurological deficits recovered and microvessel density in the cerebral cortex increased in the MCAO/R rats. Additionally, 4-MA also regulated the expression of angiogenesis factors, with an increase in vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR-2) expression and a decrease in angiopoietin 1 (Ang-1), Ang-2, and Tie-2 expression in both MCAO/R rats and HLI mice. Moreover, 4-MA increased the expression of angiogenesis-promoting factors without exacerbating BBB cascade damage in MCAO/R rats. Our results indicated that 4-MA may contribute to the formation of microvascular networks, thus promoting neurological deficit recovery after CIRI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call