Abstract

This study measured event-related brain potentials (ERPs) to test competing hypotheses regarding the effects of anger and race on early visual processing (N1, P2, and N2) and error recognition (ERN and Pe) during a sequentially primed weapon identification task. The first hypothesis was that anger would impair weapon identification in a biased manner by increasing attention and vigilance to, and decreasing recognition and inhibition of weapon identification errors following, task-irrelevant Black (compared to White) faces. Our competing hypothesis was that anger would facilitate weapon identification by directing attention toward task-relevant stimuli (i.e., objects) and away from task-irrelevant stimuli (i.e., race), and increasing recognition and inhibition of biased errors. Results partially supported the second hypothesis, in that anger increased early attention to faces but minimized attentional processing of race, and did not affect error recognition. Specifically, angry (vs. neutral) participants showed increased N1 to both Black and White faces, ablated P2 race effects, and topographically restricted N2 race effects. Additionally, ERN amplitude was unaffected by emotion, race, or object type. However, Pe amplitude was affected by object type (but not emotion or race), such that Pe amplitude was larger after the misidentification of harmless objects as weapons. Finally, anger slowed overall task performance, especially the correct identification of harmless objects, but did not impact task accuracy. Task performance speed and accuracy were unaffected by the race of the face prime. Implications are discussed.

Highlights

  • Identifying threatening stimuli in one’s environment is pivotal for survival

  • To test our competing hypotheses, we examined the effect of anger on event-related brain potentials (ERP) associated with early attention allocation (N1), sustained attention and response inhibition (N2) during race prime processing, as well as automatic error recognition (ERN) and subsequent controlled error recognition and task re-evaluation processes (Pe) following threat assessment, in a variation of Payne’s (2001) weapon identification task

  • The main goal of the present study was to examine the ways in which anger influences the cognitive processing of irrelevant and relevant stimuli during a weapon identification task, and whether it impacts task performance

Read more

Summary

Introduction

Identifying threatening stimuli in one’s environment is pivotal for survival. It is no surprise that research on attentional vigilance consistently shows people have a propensity to attend more quickly to negatively valanced stimuli compared to positive ones (Dijksterhuis & Aarts, 2003; Pratto & John, 1991; Wentura et al, 2000; Williams et al, 1996) This phenomenon, better known as the threat superiority effect, has traditionally been examined with evolutionarily relevant threats (e.g., snakes and spiders) (Fox and Damjanovic, 2006; Öhman, 1993; Öhman & Mineka, 2001). Consider for example the killing of Amadou Diallo, an unarmed Black man fatally shot by four New York City police officers who misidentified Diallo’s wallet for a gun In this situation, the threat superiority effect drove the misidentification of a harmless wallet as a threatening weapon; a mistake that cost Diallo, an innocent man, his life

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call