Abstract

Ferroptosis is a unique programmed cell death driven by iron-dependent phospholipid peroxidation. Tumor cells that escape from the conventional therapies appear more sensitive to ferroptosis. Therefore, it is extremely urgent to find safe and efficient active ingredients that induce ferroptosis in tumor cells. Herein, we identified that angelic acid, as a potent anti-tumor active ingredient in Angelica sinensis, profoundly sensitizes CRC cells to ferroptosis via a natural compound library screen. We revealed that angelic acid treatment is sufficient to predispose CRC cells to ferroptosis phenotype, evidenced by malondialdehyde (MDA) accumulation, lipid peroxidation, and upregulation of ferroptosis-associated markers CHAC1 and PTGS2, which is abolished by ferroptosis inhibitor Fer-1. Moreover, the results of network pharmacology showed that NRF2 is critical for angelic acid-mediated CRC cell ferroptosis. Mechanistically, angelic acid exerted its ferroptosis induction via directly binding and facilitating the degradation of NRF2. In addition, the syngeneic mouse models revealed that angelic acid boosts CRC cell sensitivity to ferroptosis inducer sulfasalazine with essentially no toxicity in vivo. Collectively, our findings highlighted a previously unrecognized anti-tumor mechanism of angelic acid and represented an appealing therapeutic strategy for CRC treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.