Abstract
The accumulation of radiolabeled arachidonic acid (AA), immunoblot analysis of subcellular fractions, and immunofluorescence tagging of proteins in intact cells were used to examine the coupling of ANG II receptors with the activity and location of a cytosolic phospholipase A2 (cPLA2) in vascular smooth muscle cells (VSMC). ANG II induced the accumulation of AA, which peaked by 10 min and was downregulated by 20 min. A large proportion of the AA released in response to ANG II was due to the activation of a Ca(2+)-dependent lipasc coupled to an AT1 receptor. However, regulation of Ca2+ availability failed to completely block AA release, and a small but significant reduction in ANG II-mediated AA release was observed in the presence of an AT2 antagonist. These findings, coupled with a 25% reduction in the ANG II-induced AA release by an inhibitor specific for a Ca(2+)-independent PLA2, are consistent with the presence and activation of a Ca(2+)-independent PLA2. In contrast, immunoblot analysis and immunofluorescence detection showed that the ANG II-mediated translocation of cPLA2 to a membrane fraction was exclusively AT1 dependent and regulated by Ca2+ availability. Furthermore, the nucleus was the membrane target. We conclude that ANG II regulates the Ca(2+)-dependent activation and translocation of cPLA2 through an AT1 receptor and that this event is targeted at the nucleus in VSMC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.