Abstract

The G protein-coupled receptor agonists angiotensin II (ANG II) and lysophosphatidic acid (LPA) rapidly induce tyrosine phosphorylation of the cytosolic proline-rich tyrosine kinase 2 (Pyk2) in IEC-18 intestinal epithelial cells. The combined Pyk2 tyrosine phosphorylation induced by phorbol 12,13-dibutyrate, a direct agonist of protein kinase C (PKC), and ionomycin, a Ca2+ ionophore, was equal to that induced by ANG II. Inhibition of either PKC or Ca2+ signaling attenuated the effect of ANG II and LPA, although simultaneous inhibition of both pathways failed to completely abolish Pyk2 tyrosine phosphorylation. Cytochalasin D, which disrupts stress fibers, strongly inhibited the response of Pyk2 to ANG II or LPA. The distinct Rho-associated kinase (ROK) inhibitors HA-1077 and Y-27632, as well as the Rho inhibitor Clostridium botulinum C3 exoenzyme, also significantly attenuated ANG II- and LPA-stimulated Pyk2 tyrosine phosphorylation. Simultaneous inhibition of PKC, Ca2+, and either actin assembly or ROK completely abolished the Pyk2 response. Together, these results show that ANG II and LPA rapidly induce Pyk2 tyrosine phosphorylation in intestinal epithelial cells via separate Ca2+-, PKC-, and Rho-mediated pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.