Abstract

Previous studies have demonstrated that the biological actions of atrial natriuretic factor (ANF) are mediated via increases in its intracellular second messenger guanosine 3',5'-cyclic monophosphate (cGMP). Because cGMP egresses rapidly from target cells after ANF binding to particulate guanylate cyclase-linked receptors, extracellular cGMP may be a useful biological marker for the action of ANF in vivo under pathophysiological conditions. The present studies tested the hypothesis that the avid sodium retention and renal ANF resistance characteristic of chronic congestive heart failure (CHF) are associated with attenuated renal cGMP responses to ANF. We assessed the natriuretic and cGMP responses to endogenous and exogenous ANF during the evolution of CHF produced by 6 days of rapid ventricular pacing in conscious dogs (n = 6). Simultaneous measurement of plasma and urinary cGMP concentrations allowed determination of the net renal generation of cGMP, an indicator of the renal contribution to total urinary cGMP excretion. In early CHF, increased sodium excretion and renal cGMP production were observed in association with increases in plasma ANF. Exogenous ANF administration (10 micrograms/kg iv) before CHF also produced parallel increases in sodium excretion and renal cGMP production. In more advanced CHF produced by 6 days of pacing, we observed avid sodium retention in association with reversal of earlier increases in renal cGMP production despite progressive increases in circulating ANF. Natriuretic and renal cGMP responses to exogenous ANF were similarly attenuated in chronic CHF. These studies suggest that 1) renal cGMP production is a useful biological marker for the renal natriuretic action of ANF; 2) endogenous ANF contributes to the maintenance of sodium excretion in early CHF via increases in renal cGMP production; and 3) the avid sodium retention and renal ANF resistance in advanced CHF are, in part, linked to attenuated renal cGMP responses to endogenous and exogenous ANF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.