Abstract
Although Lower Limb Robotic Rehabilitation device exhibit a great prospect in the rehabilitation of impaired limb, yet it has not been widely applied to clinical rehabilitation. This is mostly due to the insufficient bidirectional information interaction between exoskeleton and patient. In the shared control at the interaction point, it is very important that the deficiency of impaired lower limb in sharing the knee joint dynamics (Capturing of the intended action of the patient) is extracted beforehand to estimate as to how much assistance the robotic exoskeleton would provide. The intended action data that can be extracted from EMG signal may include the intended posture, intended torque, intended knee joint angle, intended knee joint torque and impedance parameter. In this paper, an application of Adaptive Network Based Fuzzy Inference System (ANFIS) has been proposed for proprioceptive feedback on the status of the interaction force at the patient robotic exoskeleton interaction point. ANFIS has been used to model the relationship between input and output. Interaction forces, rate of change in surface electromyography (EMG) signal are two inputs to ANFIS model and impedance parameters damping coefficients (also stiffness) is output. Impedance control law has damping as one of the tuning parameter. The resultant total torque is calculated from this law. The proposed model is able to estimate damping and demonstrate decent accuracy in modulating the knee joint dynamics to minimize the interaction force at the Patient Exoskeleton interaction point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.