Abstract

This paper develops a data-driven approach for incipient fault diagnosis based on ANFIS and Takagi–Sugeno (TS) interval observers. First, the nonlinear bioreactor system is identified using an adaptive neuro-fuzzy inference system (ANFIS), which results in a set of polytopic TS models derived from measurement data. Second, a bank of TS interval observers is deployed to detect sensor and process faults using adaptive thresholds. Unlike other works that require training fault data, only fault-free data is considered for ANFIS learning in this work. Fault insolation is based on residual generation and evaluated on a fault signal matrix (FSM). Parametric uncertainty and measurement noise are considered to guarantee the method’s robustness. The effectiveness of the proposed method is tested on a well-known bioreactor Continuous stirred tank reactor system (CSTR) reference simulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.