Abstract

A new computer code, called ANFIBE (ANalysis of Fusion Irradiated BEryllium), has been developed to describe the most important processes (diffusion, gas precipitation, bubble coalescence, helium-bubble trapping, chemical trapping, etc.) thought to affect gas behavior and swelling in beryllium during fast neutron irradiation. The new model allows the prediction of helium and tritium redistribution, induced swelling, and release. The relevant effects occurring in irradiated beryllium under steady or transient temperature conditions have been considered from a microscopic (lattice and subgranular volume elements), structural (metallographic features of the material), and geometrical (specimen design parameters) point of view.The main results of this validation work represent the second part of the presentation of this model. The relevant beryllium properties published in the literature are presented and critically examined. The performance of the code is assessed by comparing the code predictions with a large set of published experimental data on swelling and gas release in beryllium under fast neutron irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.