Abstract

To establish the relationship between elastin degradation and aneurysm growth in New Zealand white rabbit model aneurysms, and to explore the potential for pharmacologic inhibition of elastinolysis and aneurysm growth with use of the matrix metalloproteinase (MMP) inhibitor doxycycline. Elastase-induced, saccular aneurysms created in the right common carotid artery in 30 animals randomly divided into controls (n = 16) and doxycycline treated (n = 14) were studied. Aneurysm growth was determined by angiography and aneurysm specimens were collected at 7 and 14 days for histologic and immunohistochemical analysis. Aneurysms were characterized by marked elastin degradation and thickening of the arterial wall media in the absence of inflammatory cell markers. There was no evidence for expression of MMPs in the aneurysm wall at any time point. Aneurysm formation and growth were not prevented by the systemic administration of doxycycline. Mean aneurysm width increased from 3.1 +/- 0.7 mm at 3 days to 3.7 +/- 0.8 mm at 7 days and 4.2 +/- 0.8 mm at 14 days (P =.012 and P =.017, respectively). There was no statistically significant difference in aneurysm size and elastin content at any time point between doxycycline treated and control animals. Elastase-induced rabbit aneurysm formation is accompanied by total elastin destruction that was not inhibited by the administration of doxycycline. Aneurysms in this model may be caused by the initial infusion of elastase, rather than by ongoing degradation from endogenous proteases released by inflammatory cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.