Abstract

Oncocytic cells are characterized by a greatly increased number of mitochondria that distend the cell cytoplasm and result in a distinctive granular appearance of the cell on conventional histology sections. Oncocytes are frequently found in metabolically active human tissues including the thyroid gland, and, as a general rule, when their proportion in a thyroid tumor is greater than 75% the tumor is referred to as oncocytic (Hürthle cell) adenoma or carcinoma. Such tumors represent a subset of thyroid lesions, and recently, both interphase fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) studies reported that they may show aneuploidy, with widespread numerical chromosomal alterations. In contrast, very few cases have been studied by conventional cytogenetic analysis. Whether the cells with chromosomal changes are the same as those with mitochondrial accumulation or whether lesions only partially composed of oncocytic cells also have cytogenetic alterations is unclear. To investigate the relationship between acquisition of the oncocytic phenotype and numerical chromosomal changes, we analyzed a random selection of thyroid lesions with (18 cases) and without (11 cases) morphological evidence of oncocytic differentiation. Lesions with oncocytes included hyperplastic nodules, adenomas, Hürthle cell tumors, and papillary carcinomas with lymphocytic stroma (Whartin-like tumors of the thyroid). Karyotypic changes were analyzed by cytogenetic analysis, FISH, or CGH, and the results were compared with in situ analysis of mitochondrial accumulation by immunofluorescence. A striking correlation between the presence of oncocytes and the presence of aneuploid katyotypes was seen in the oncocytic follicular thyroid nodules, but not in the oncocytic papillary tumors. Structural chromosome changes or normal karyotypes were observed in the lesions lacking oncocytic features. Extending the FICTION technique to the evaluation of a cytoplasmic antigen (mitochondrial membrane antigen), we pursued the simultaneous visualization of both mitochondrial increase and numerical chromosomal alterations, and showed that oncocytes of follicular lesions are prone to become aneuploid. Our data support the contention that follicular tumors composed of oncocytes should be regarded as a distinct subset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.