Abstract

A new type of assay for the identification of agents causing aneuploidy is described. This assay takes advantage of allohexaploid wheat in which monosomic and nullisomic cell lineages can be genetically detected. The wheat strain used (Neatby's virescens) was homozygous for a pair of recessive alleles ( ν 1) which in homozygous condition interfere with normal pigmentation of the leaves at low temperature whereas at higher temperature nearly normal green color formation is permitted. In a single dose this allele cannot suppress the formation of green color even at low temperature, i.e., it is hemizygous ineffective. This locus is in the short arm of chromosome 3B near the centromere. As a consequence of non-disjunction of this chromosome twin sectors may be detected, in which the monosomic cell lineages appear green whereas the trisomic sectors display with color on a cream-colored background at low temperature. This genetic system can also be used for the detection of deletions or duplications involving the short arm of chromosome 3B, and to some extent the A- and the D-genome homeologues. We have determined the pattern of differentiation of the shoot apex and on that basis we can separate the independent genetic events from reappearance of the sectors of common origin in the successive leaves. Such an understanding of development of the leaf sectors permits a quantitative estimation of the genetic response of the plants to mutagenic factors. We have found that X-rays, γ-rays, p-fluorophenylalanine, 3-aminotriazole, caffeine, vinblastin sulfate, benzo[ a]pyrene and auramine significantly increased aneuploidy, and diethylstilbestrol, sulfacetamide, safrole and dichlorvos caused some increase of sectoring. Cytological data on root tips of irradiated seeds support the interpretation of the mechanism of sector formation in the leaves. The test is simple, fast, inexpensive, and it does not require elaborate facilities or highly trained technicians. The trials were well reproducible during a period of 3 years in 2 laboratories. Therefore we consider the new assay a useful complement to other tests of chemicals or physical agents that may cause non-disjunction and other chromosomal aberrations in human populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call