Abstract
The cell's euploid status is influenced by, amongst other mechanisms, an intact spindle assembly checkpoint (SAC), an accurate centrosome cycle, and proper cytokinesis. Studies in mammalian cells suggest that dysregulated SAC function, centrosome cycle, and cytokinesis can all contribute significantly to aneuploidy. Of interest, human cancers are frequently aneuploid and show altered expression in SAC genes. The SAC is a multi-protein complex that monitors against mis-segregation of sister chromatids. Several recent experimental mouse models have suggested a link between weakened SAC and in vivo tumorigenesis. Here, we review in brief some mechanisms which contribute to cellular aneuploidy and offer a perspective on the relationship between aneuploidy and human cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.