Abstract

The study deals with first time report on encapsulation of chemically characterized Anethum graveolens essential oil within chitosan nanomatrix (Nm-AGEO) using ionic gelation technique to enhance the antimicrobial, antiaflatoxigenic, antioxidant, and in situ efficacy against stored rice biodeterioration. GC-MS analysis of AGEO revealed dill apiol (33.79%), carvone (27.19%), and limonene (13.76%) as major components. Nm-AGEO characterization through scanning electron microscopy (SEM), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FT-IR) confirmed successful encapsulation of AGEO within chitosan as an encapsulant. Biphasic and sustained release pattern reflected controlled volatilization of bioactives, helpful in shelf-life extension of stored food commodities. Nm-AGEO caused significant impairment in fungal ergosterol biosynthesis and enhanced leakage of vital ions indicating destabilization in plasma membrane integrity. Inhibition of methylglyoxal (aflatoxin inducer) biosynthesis by Nm-AGEO confirmed novel antiaflatoxigenic mechanism of action, suggesting its future exploitation for development of aflatoxin-resistant rice varieties through green transgenics. Nm-AGEO induced impairment in antioxidant defense enzymes (SOD, CAT) and non-enzymatic defense biomolecules GSH and GSSG revealing biochemical mechanism of action. In silico modeling of carvone and limonene with Omt-A and Ver-1 genes suggested molecular mechanism of aflatoxin inhibition. Treatment of rice samples with Nm-AGEO caused significant protection from aflatoxin B1 contamination and lipid peroxidation without altering organoleptic properties. Moreover, favorable safety profile for mammalian system and non-phytotoxic nature of chitosan-fabricated AGEO nanoemulsion-based delivery system recommend attention of food industries for its formulation as potential green preservative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.