Abstract

The nicotinic acetylcholine receptor (AChR) is the archetype of the Cys-loop ligand-gated ion channel receptor superfamily. Noncompetitive antagonists inhibit the AChR without interacting directly with agonist sites. Among noncompetitive antagonists, general and local anesthetics have been used for decades to study the structure and function of muscle- as well as neuronal-type AChRs. In this review, we address and update all information regarding the characterization of binding sites and the mechanism of action for n-alkanols, barbiturates, inhalational and dissociative general anesthetics, as well as for tertiary and quaternary local anesthetics. The experimental evidence outlined in this review suggest that: (1) several neuronal-type AChRs might be targets for the pharmacological action of distinct anesthetics; (2) the molecular components of a specific anesthetic locus on a certain receptor type are different from the structural determinants of the site for the same anesthetic on a different receptor type; (3) there are unique binding sites for distinct anesthetics in the same receptor; (4) the affinity of a specific anesthetic depends on the AChR conformational state; (5) anesthetics may inhibit AChRs by different mechanisms including open-channel-blocking, augmenting the desensitization process, and/or inactivating the opening of resting receptors; and (6) some anesthetics may potentiate AChR activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.