Abstract

cis-9,10-Octadecenoamide (cOA) accumulates in cerebrospinal fluid during sleep deprivation and induces sleep in animals, but its cellular actions are poorly characterized. In earlier studies, like a variety of anesthetics, cOA modulated gamma-aminobutyric acidA receptors and inhibited transmitter release/burst firing in cultured neurones or synaptoneurosomes. Here, radioligand binding ([3H]batrachotoxinin A 20-alpha-benzoate and mouse central nervous system synaptoneurosomes) and voltage clamp (whole cell recording from cultured NIE115 murine neuroblastoma) confirmed an interaction with neuronal voltage-gated sodium channels (VGSC). cOA stereoselectively inhibited specific binding of toxin to VGSC (inhibitor concentration that displaces 50% of specifically bound radioligand, 39.5 microm). cOA increased (4x) the Kd of toxin binding without affecting its binding maximum. Rate of dissociation of radioligand was increased without altering association kinetics, suggesting an allosteric effect (indirect competition at site 2 on VGSC). cOA blocked tetrodotoxin-sensitive sodium currents (maximal effect and affinity were significantly greater at depolarized potentials; P < 0.01). Between 3.2 and 64 microm, the block was concentration-dependent and saturable, but cOA did not alter the V50 for activation curves or the measured reversal potential (P > 0.05). Inactivation curves were significantly shifted in the hyperpolarizing direction by cOA (maximum, -15.4 +/- 0.9 mV at 32 microm). cOA (10 microm) slowed recovery from inactivation, with tau increasing from 3.7 +/- 0.4 ms to 6.4 +/- 0.5 ms (P < 0.001). cOA did not produce frequency-dependent facilitation of block (up to 10 Hz). These effects (and the capacity of oleamide to modulate gamma-aminobutyric acidA receptors in earlier studies) are strikingly similar to those of a variety of anesthetics. Oleamide may represent an endogenous ligand for depressant drug sites in mammalian brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.