Abstract

The polarization of macrophages has been previously demonstrated to be closely related to immune and inflammatory processes in the tumorigenesis and progression of breast cancer. In the present study, Anemoside A3 (A3), an active compound from Pulsatilla saponins, was screened out and polarized M0 macrophages into the classically activated macrophages (M1-phenotype). We found that A3 is an activator of TLR4/NF-κB/MAPK signaling pathway. A3 increased the expression of CD86+ (a marker of M1 macrophage) in M0 macrophage, and increased the typical M1 macrophage pro-inflammatory cytokines TNF-α, and IL-12 expression in a TLR4-dependent manner. A macrophage-cancer cell co-culture system was established to evaluate whether A3 can could switch tumor-associated macrophages (TAMs) to the M1-phenotype. In the co-culture system, A3 increased the expression of IL-12 in macrophages, whereby suppressing MCF-7 breast cancer cell line proliferation and VEGF-mediated angiogenesis. Moreover, A3 induced M1 macrophage polarization in the 4 T1 murine breast cancer model and effectively inhibited tumor growth and tumor angiogenesis. Collectively, these findings indicated that A3 induced M1 macrophages polarization to repress breast tumorigenesis via targeting the TLR4/NF-κB/MAPK signaling pathway. This study provides a rationale for utilizing traditional Chinese medicine extracts in the immunotherapy of breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call