Abstract

In many industrial applications, like high precision weighing and positioning, the elastic and dimensional stability of materials is required at a nanometric scale. High-resolution laser interferometry and mechanical spectroscopy have been employed to measure low-temperature anelastic creep of the short-fiber-reinforced composite Al-4 wt pct Cu-Al2O3. The typical strain resolution of the laser interferometer is 10-10. Fiber reinforcement has been found to increase the dislocation density in the metal matrix; in parallel, damping and anelastic creep are enhanced. This behavior has been explained on the basis of the structure of interparticle dislocations and θ′ relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.