Abstract

The continuous increase in Android malware applications (apps) represents a significant danger to the privacy and security of users’ information. Therefore, effective and efficient Android malware app-classification techniques are needed. This paper presents a method for Android malware classification using optimized ensemble learning based on genetic algorithms. The suggested method is divided into two steps. First, a base learner is used to handle various machine learning algorithms, including support vector machine (SVM), logistic regression (LR), gradient boosting (GB), decision tree (DT), and AdaBoost (ADA) classifiers. Second, a meta learner RF-GA, utilizing genetic algorithm (GA) to optimize the parameters of a random forest (RF) algorithm, is employed to classify the prediction probabilities from the base learner. The genetic algorithm is used to optimize the parameter settings in the RF algorithm in order to obtain the highest Android malware classification accuracy. The effectiveness of the proposed method was examined on a dataset consisting of 5560 Android malware apps and 9476 goodware apps. The experimental results demonstrate that the suggested ensemble-learning strategy for classifying Android malware apps, which is based on an optimized random forest using genetic algorithms, outperformed the other methods and achieved the highest accuracy (94.15%), precision (94.15%), and area under the curve (AUC) (98.10%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.