Abstract
Mobile malware has become the centerpiece of most security and privacy threats on the Internet. Especially with the openness of the Android market, many malicious apps are hiding in a large number of applications, which makes malware detection more challenging. In this study, eXtreme Gradient Boosting (XGBoost) is used to establish the Android-based malware detection and classification framework. The framework utilizes APK permission categories extracted from Android applications. The comparison of modeling results demonstrates that the XGBoost is especially suitable for Android malware classification and can achieve 74.40% of F1-score with real-world Android application sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.