Abstract

Background:Off-the-shelf-mobile devices have several sensors available onboard that may be used for the recognition of Activities of Daily Living (ADL) and the environments where they are performed. This research is focused on the development of Ambient Assisted Living (AAL) systems, using mobile devices for the acquisition of the different types of data related to the physical and physiological conditions of the subjects and the environments. Mobile devices with the Android Operating Systems are the least expensive and exhibit the biggest market while providing a variety of models and onboard sensors.Objective:This paper describes the implementation considerations, challenges and solutions about a framework for the recognition of ADL and the environments, provided as an Android library. The framework is a function of the number of sensors available in different mobile devices and utilizes a variety of activity recognition algorithms to provide a rapid feedback to the user.Methods:The Android library includes data fusion, data processing, features engineering and classification methods. The sensors that may be used are the accelerometer, the gyroscope, the magnetometer, the Global Positioning System (GPS) receiver and the microphone. The data processing includes the application of data cleaning methods and the extraction of features, which are used with Deep Neural Networks (DNN) for the classification of ADL and environment. Throughout this work, the limitations of the mobile devices were explored and their effects have been minimized.Results:The implementation of the Android library reported an overall accuracy between 58.02% and 89.15%, depending on the number of sensors used and the number of ADL and environments recognized. Compared with the results available in the literature, the performance of the library reported a mean improvement of 2.93%, and they do not differ at the maximum found in prior work, that based on the Student’s t-test.Conclusion:This study proves that ADL like walking, going upstairs and downstairs, running, watching TV, driving, sleeping and standing activities, and the bedroom, cooking/kitchen, gym, classroom, hall, living room, bar, library and street environments may be recognized with the sensors available in off-the-shelf mobile devices. Finally, these results may act as a preliminary research for the development of a personal digital life coach with a multi-sensor mobile device commonly used daily.

Highlights

  • Based on the partial results obtained in the previous work [65 - 68], we present a summary of the accuracies obtained in each stage of the framework for the recognition of Activities of Daily Living (ADL) and their environments (Tables 21 to 23), for further comparison with the results obtained with the Android library developed for this study (Tables 24 to 26), which combines the different stages all together

  • The automatic recognition of ADL and their environments may be performed with the sensors available in consumer mobile devices, including the accelerometer, the gyroscope, the magnetometer, the microphone and the Global Positioning System (GPS) receiver

  • The library developed should be a function of the number of sensors available in the mobile devices, and able to provide a rapid feedback to the user, thanks to the local processing of the sensors’ data

Read more

Summary

Introduction

ADL recognition is important to design a personal digital life coach [14] The development of these systems is specially important to support the autonomy of older users, patients with chronic diseases and users that may have some type of disability [15, 16]. These systems may be useful for everyone, including athletes and young users, as the proposed framework can be integrated into a tool for the monitoring and training of lifestyles [14]. This research is focused on the development of Ambient Assisted Living (AAL) systems, using mobile devices for the acquisition of the different types of data related to the physical and physiological conditions of the subjects and the environments. Mobile devices with the Android Operating Systems are the least expensive and exhibit the biggest market while providing a variety of models and onboard sensors

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.