Abstract

Several lines of evidence indicate that inflammation and endothelial cell dysfunction are important initiating events in atherosclerosis. Tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine, induces the expression of cell adhesion molecules and results in monocyte adherence and atheromatous plaque formation. Andrographolide (AP) is a major bioactive diterpene lactone in Andrographis paniculata that has anti-inflammatory activity. A previous study demonstrated the role of heme oxygenase 1 (HO-1) in the inhibition of TNF-α-induced ICAM-1 expression by AP. The present study investigated the effect of AP on the IKK/NF-κB signaling pathway, which mediates TNF-α-induced ICAM-1 expression in EA.hy926 cells. Similar to the previous study, AP inhibited TNF-α-induced ICAM-1 mRNA and protein levels, its expression on the cell surface, and subsequent adhesion of HL-60 cells to EA.hy926 cells. AP inhibited TNF-α-induced κB inhibitor (IκB) kinase (IKK) and IκBα activation, p65 nuclear translocation, NF-κB and DNA binding activity, and promoter activity of ICAM-1. Although AP increased the intracellular cAMP concentration and induced the phosphorylation of cAMP response element-binding protein (CREB), knocking down CREB protein expression by transfecting the cells with CREB-specific small interfering RNA did not relieve the inhibition of ICAM-1 expression by AP. Taken together, these results suggest that AP down-regulates TNF-α-induced ICAM-1 expression at least in part via attenuation of activation of NF-κB in EA.hy926 cells rather than through activation of CREB. The results suggest that AP may have potential as a cardiovascular-protective agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.