Abstract

BackgroundSteroid hormones influence mitogenic signaling pathways, apoptosis, and cell cycle checkpoints, and it has long been known that incidence of bladder cancer (BC) in men is several times greater than in women, a difference that cannot be attributed to environmental or lifestyle factors alone. Castration reduces incidence of chemically-induced BC in rodents. It is unclear if this effect is due to hormonal influences on activation/deactivation of carcinogens or a direct effect on urothelial cell proliferation or other malignant processes. We examined the effect of castration on BC growth in UPII-SV40T transgenic mice, which express SV40 T antigen specifically in urothelium and reliably develop BC. Furthermore, because BC growth in UPII-SV40T mice is exophytic, we speculated BC growth was dependent on angiogenesis and angiogenesis was, in turn, androgen responsive.MethodsFlat panel detector-based cone beam computed tomography (FPDCT) was used to longitudinally measure exophytic BC growth in UPII-SV40T male mice sham-operated, castrated, or castrated and supplemented with dihydrotestosterone (DHT). Human normal bladder and BC biopsies and mouse bladder were examined quantitatively for thrombospondin-1 (TSP1) protein expression.ResultsMice castrated at 24 weeks of age had decreased BC volumes at 32 weeks compared to intact mice (p = 0.0071) and castrated mice administered DHT (p = 0.0233; one-way ANOVA, JMP 6.0.3, SAS Institute, Inc.). Bladder cancer cell lines responded to DHT treatment with increased proliferation, regardless of androgen receptor expression levels. TSP1, an anti-angiogenic factor whose expression is inhibited by androgens, had decreased expression in bladders of UPII-SV40T mice compared to wild-type. Castration increased TSP1 levels in UPII-SV40T mice compared to intact mice. TSP1 protein expression was higher in 8 of 10 human bladder biopsies of normal versus malignant tissue from the same patients.ConclusionFPDCT allows longitudinal monitoring of exophytic tumor growth in the UPII-SV40T model of BC that bypasses need for chemical carcinogens, which confound analysis of androgen effects. Androgens increase tumor cell growth in vitro and in vivo and decrease TSP1 expression, possibly explaining the therapeutic effect of castration. This effect may, in part, explain gender differences in BC incidence and implies anti-androgenic therapies may be effective in preventing and treating BC.

Highlights

  • Steroid hormones influence mitogenic signaling pathways, apoptosis, and cell cycle checkpoints, and it has long been known that incidence of bladder cancer (BC) in men is several times greater than in women, a difference that cannot be attributed to environmental or lifestyle factors alone

  • Total bladder cancer volume determined by flat panel detector-based cone beam computed tomography To monitor BC volume in male UPII-SV40T mice, animals were scanned using an Flat panel detector-based cone beam computed tomography (FPDCT) scanner at three different times points four weeks apart

  • Three-dimensional reconstruction of the FPDCT scans with pseudo-colored tumors overlaid indicated the exophytic nature of the BC (Fig. 1B, D)

Read more

Summary

Introduction

Steroid hormones influence mitogenic signaling pathways, apoptosis, and cell cycle checkpoints, and it has long been known that incidence of bladder cancer (BC) in men is several times greater than in women, a difference that cannot be attributed to environmental or lifestyle factors alone. Castration reduces incidence of chemically-induced BC in rodents It is unclear if this effect is due to hormonal influences on activation/deactivation of carcinogens or a direct effect on urothelial cell proliferation or other malignant processes. It is tempting to attribute the sexual incidence difference to environmental or lifestyle factors; the ratio has remained unchanged while women have entered the male workplace, and the incidence of smoking and smoking related diseases in females has increased considerably compared to that in men in most racial and demographic groups. Of note is that many putative bladder carcinogens are activated or inactivated by cytochrome P450 enzymes, many of which are influenced by androgens [5,6,7,8,9]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call