Abstract

BackgroundAlthough androgens are depleted in castration resistant prostate cancer (CRPC), metastases still express nuclear androgen receptor (AR) and androgen regulated genes. We recently reported that C-terminal truncated constitutively active AR splice variants contribute to CRPC development. Since specific antibodies detecting all C-terminal truncated AR variants are not available, our aim was to develop an approach to assess the prevalence and function of AR variants in prostate cancer (PCa).Methodology/Principal FindingsUsing 2 antibodies against different regions of AR protein (N- or C-terminus), we successfully showed the existence of AR variant in the LuCaP 86.2 xenograft. To evaluate the prevalence of AR variants in human PCa tissue, we used this method on tissue microarrays including 50 primary PCa and 162 metastatic CRPC tissues. RT-PCR was used to confirm AR variants. We observed a significant decrease in nuclear C-terminal AR staining in CRPC but no difference between N- and C-terminal AR nuclear staining in primary PCa. The expression of the AR regulated proteins PSA and PSMA were marginally affected by the decrease in C-terminal staining in CRPC samples. These data suggest that there is an increase in the prevalence of AR variants in CRPC based on our ability to differentiate nuclear AR expression using N- and C-terminal AR antibodies. These findings were validated using RT-PCR. Importantly, the loss of C-terminal immunoreactivity and the identification of AR variants were different depending on the site of metastasis in the same patient.ConclusionsWe successfully developed a novel immunohistochemical approach which was used to ascertain the prevalence of AR variants in a large number of primary PCa and metastatic CRPC. Our results showed a snapshot of overall high frequency of C-terminal truncated AR splice variants and site specific AR loss in CRPC, which could have utility in stratifying patients for AR targeted therapeutics.

Highlights

  • Metastatic prostate cancer (PCa) that recurs following castration or androgen deprivation therapy (ADT), termed castration resistant prostate cancer (CRPC), portends a poor outcome with high lethality

  • We successfully developed a novel immunohistochemical approach which was used to ascertain the prevalence of androgen receptor (AR) variants in a large number of primary PCa and metastatic CRPC

  • Our results showed a snapshot of overall high frequency of C-terminal truncated AR splice variants and site specific AR loss in CRPC, which could have utility in stratifying patients for AR targeted therapeutics

Read more

Summary

Introduction

Metastatic prostate cancer (PCa) that recurs following castration or androgen deprivation therapy (ADT), termed castration resistant prostate cancer (CRPC), portends a poor outcome with high lethality. Various mechanisms have been shown to lead to AR transactivation and engage the AR program following castration. These include persistence of intratumoral androgens, ectopic androgen synthesis by the tumor either from adrenal androgens or intratumoral de novo synthesis, and enhanced androgen transport into the tumor by solute carrier organic anion transporter proteins [2,3,4,5,6]. Alterations in AR co-regulators may modulate AR activity when androgen levels are decreased [14,15,16,17,18] Each of these mechanisms promoting AR activation in CRPC requires the carboxy-terminus region of the mature protein which contains the ligand-binding domain (LBD). Since specific antibodies detecting all C-terminal truncated AR variants are not available, our aim was to develop an approach to assess the prevalence and function of AR variants in prostate cancer (PCa)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call