Abstract
Excess androgens are associated with a characteristic polyfollicular ovarian morphology; however, it is not known to what extent this problem is due to direct androgen action on follicular development vs. interference with gonadotropin release at the level of the pituitary or hypothalamus. To elucidate potential androgen effects on the ovary, we investigated the cellular localization of androgen receptor (AR) messenger ribonucleic acid (mRNA) in rhesus monkey using in situ hybridization. To investigate the regulation of ovarian AR gene expression, we compared the relative abundance of AR transcripts in monkeys during follicular and luteal phases of the menstrual cycle and in monkeys treated with testosterone. To assess potential functional consequences of AR expression in the primate ovary, we compared AR mRNA levels with indexes of follicular cell proliferation and apoptosis in serial sections from individual follicles. AR mRNA expression was most abundant in granulosa cells of healthy preantral and antral follicles in the primate ovary. Theca interna and stromal cells also expressed AR mRNA, but to a lesser degree than granulosa cells. No significant cycle stage effects were noted in AR mRNA levels; however, larger numbers of animals would be necessary to definitively establish a cycle stage effect. AR mRNA level was significantly increased in granulosa cells and was decreased in theca interna and stromal cells of testosterone-treated monkeys. Importantly, granulosa cell AR mRNA abundance was positively correlated with expression of the proliferation-specific antigen Ki-67 (r = 0.91; P < 0.001) and negatively correlated with granulosa cell apoptosis (r = -0.64; P < 0.001). In summary, these data show that primate ovary AR gene expression is most abundant in granulosa cells of healthy growing follicles, where its expression is up-regulated by testosterone. The positive correlation between granulosa AR gene expression and cell proliferation and negative correlation with programmed cell death suggests that androgens stimulate early primate follicle development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Clinical Endocrinology & Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.