Abstract

Esophageal squamous cell carcinoma (ESCC) is an aggressive epithelial malignancy with poor prognosis. Interestingly, ESCC is strongly characterized by a male-predominant propensity. Our previous study showed that androgen receptor (AR) orchestrated a transcriptional repression program to promote ESCC growth, but it remains unclear whether AR can also activate oncogenic signaling during ESCC progression. In this study, by analyzing our previous AR cistromes and androgen-regulated transcriptomes, we identified uridine diphosphate glucuronosyltransferase family 2 member B15 (UGT2B15) as a bona fide target gene of AR. Mechanistically, AP-1 cofactors played important and collaborative roles in AR-mediated UGT2B15 upregulation. Functional studies have revealed that UGT2B15 promoted invasiveness in vitro and lymph node metastasis in vivo. UGT2B15 was partially responsible for the AR-induced invasive phenotype in ESCC cells. Importantly, simultaneous blocking of AP-1 and AR resulted in stronger inhibition of cell invasiveness compared to inhibiting AP-1 or AR alone. In conclusion, our study reveals the molecular mechanisms underlying the AR-driven ESCC invasion and suggests that the AR/AP1/UGT2B15 transcriptional axis can be potentially targeted in suppressing metastasis in male ESCC patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.