Abstract

Great strides have been made in the treatment of castration-resistant prostate cancer (CRPC) with the development of new antiandrogens (enzalutamide) and more potent androgen synthesis inhibitors (abiraterone) that have both improved patient outcomes. These new drugs have also helped unravel the complex biology of androgen-androgen receptor driven prostate cancer and brought into prominence various mechanisms triggering the development of drug resistance and tumour cell survival despite use of androgen deprivation therapy (ADT). The complex role of glucocorticoids in the treatment, management and progression of patients with CRPC is integral to these advances. Historically, glucocorticoid treatment has resulted in both subjective and objective responses in patients with advanced-stage prostate cancer. With the use of these new therapeutic agents, however, unexpected glucocorticoid-related mechanisms that can cause iatrogenic stimulation of prostate cancer growth have emerged, which might contribute to drug resistance and disease progression despite optimal ADT. For example, the upregulation of glucocorticoid receptors (GRs) during enzalutamide therapy results in glucocorticoid-GR-mediated regulation of androgen target genes, leading to escape from enzalutamide blockade. Thus, understanding the biological role of glucocorticoids in patients with prostate cancer is of major importance in the era of new and evolving antiandrogen therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.