Abstract

The mormyrid fish of Africa produce a weak electric pulse called an Electric Organ Discharge (EOD) that functions in electrical guidance and communication. The EOD waveform describes the appearance of a single pulse which is produced by the electric organ's excitable cells, the electrocytes. For some species, there is a sex difference in the appearance and duration of the EOD waveform, which is under the control of gonadal steroid hormones. We now show, using biochemical techniques, that the steroid-sensitivity of the myogenic electric organ correlates with the presence of comparatively high levels of androgen-binding activity in the cytosol of electrocytes. The EOD rhythm describes the rate at which the electric organ fires and is under the control of a central electromotor pathway. Sex differences have also been described for the EOD rhythm. Using steroid autoradiographic techniques, we found uptake of tritium-labelled dihydrotestosterone (3H-DHT) by cells within the reticular formation that lie adjacent to the medullary 'relay nucleus' which innervates the spinal electromotoneurons that excite the electric organ. However, no DHT-binding was observed in the relay or electromotor nuclei. Steroid-concentrating cells were also found in several other brainstem regions, the hypothalamus, and the thalamus. In particular, a group of DHT-concentrating, motoneuron-like cells were observed in the caudal medulla and were identified as a swimbladder or sonic motor nucleus. The biochemical data suggest that the electric organ has evolved a sensitivity to gonadal steroid hormones that may underlie the development of known sex differences in the EOD waveform. The autoradiographic results suggest that if steroids do affect the development of sex differences in the EOD rhythm, it is at some level removed from known spinal and medullary electromotor nuclei.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call