Abstract

We present planar aluminum superconductor–graphene junctions whose hybrid interface is engineered for couplings ranging from tunneling to the strongly coupled regime by employing an atomically thin van der Waals tunneling barrier. Without the vdW barrier, we find Al makes strongly coupled contacts with the fully proximities graphene channel underneath. Using a large band gap hexagonal boron nitride (hBN) barrier, we find the junctions always remain in the weak coupling regime, exhibiting tunneling characteristics. Using monolayer semi-conducting transition metal dichalcogenides (TMDs) such as MoS2, we realize intermediate coupling with enhanced junction conductance due to the Andreev process. In this intermediate regime, we find that junction resistance changes in discrete steps when sweeping a perpendicular magnetic field. The period of the resistance steps in the magnetic field is inversely proportional to the junction area, suggesting the physical origin of our observations is due to magnetic-field-induced vortex formation in the planar junction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call