Abstract
There is growing interest in using multi-terminal Josephson junctions (MTJJs) as a platform to artificially emulate topological phases and to investigate complex superconducting mechanisms such as quartet and multiplet Cooper pairings. Current experimental signatures in MTJJs have led to conflicting interpretations of the salient features. In this work, we report a collaborative experimental and theoretical investigation of graphene-based four-terminal Josephson junctions. We observe resonant features in the differential resistance maps that resemble those ascribed to multiplet Cooper pairings. To understand these features, we model our junctions using a circuit network of coupled two-terminal resistively and capacitively shunted junctions (RCSJs). Under appropriate bias current, the model predicts that a current flowing between two diagonal terminals in a four-terminal geometry may be represented as a sinusoidal function of a weighted sum of the superconducting phases. We show that starting from a semi-classical model with diffusive current-phase relations, the MTJJ effectively emulates a general form of the expected current-phase relation for multiplet Cooper pairings. Our study therefore suggests that differential resistance measurements alone are insufficient to conclusively distinguish resonant Andreev reflection processes from semi-classical circuit-network effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.