Abstract
In a wide range of applications it is required to compute the nearest correlation matrix in the Frobenius norm to a given symmetric but indefinite matrix. Of the available methods with guaranteed convergence to the unique solution of this problem the easiest to implement, and perhaps the most widely used, is the alternating projections method. However, the rate of convergence of this method is at best linear, and it can require a large number of iterations to converge to within a given tolerance. We show that Anderson acceleration, a technique for accelerating the convergence of fixed-point iterations, can be applied to the alternating projections method and that in practice it brings a significant reduction in both the number of iterations and the computation time. We also show that Anderson acceleration remains effective, and indeed can provide even greater improvements, when it is applied to the variants of the nearest correlation matrix problem in which specified elements are fixed or a lower bound is imposed on the smallest eigenvalue. Alternating projections is a general method for finding a point in the intersection of several sets and ours appears to be the first demonstration that this class of methods can benefit from Anderson acceleration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.