Abstract

We study how the number of employed modes impacts the ability to witness non-Markovian evolutions via correlation backflows in continuous-variable quantum dynamics. We first prove the existence of non-Markovian Gaussian evolutions that do not show any revivals in the correlations between the mode evolving through the dynamics and a single ancillary mode. We then demonstrate how this scenario radically changes when two ancillary modes are considered. Indeed, we show that the same evolutions can show correlation backflows along a specific bipartition when three-mode states are employed, and where only one mode is subjected to the evolution. These results can be interpreted as a form of activation phenomenon in non-Markovianity detection and are proven for two types of correlations, entanglement and steering, and two classes of Gaussian evolutions, a classical noise model and the quantum Brownian motion model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.